Evidence in support of Binaural Voice Stream Technology™

Overview

- Selected Listening Strategies
- Binaural Hearing in complex listening conditions
- Improved Speech Intelligibility using binaural algorithms
- Scientific evidence of benefit of binaural algorithms
Technology Behind the Hearing Aids Grand Rounds - Round 2 Web Seminar
Recorded October 30, 2014

Selected Listening Strategies
- What parameters influence speech intelligibility in "real-life", especially in multi-source environments?

- Type of interfering sound:
 - Noise vs. speech
 - Frequency, pitch, modulation
 - Context information & hypothesis

- Age
- Hearing Loss

SoundProfile
Technology Behind the Hearing Aids Grand Rounds - Round 2 Web Seminar
Recorded October 30, 2014

Selected Listening Strategies
- What parameters influence speech intelligibility in "real-life", especially in multi-source environments?

- Type of interfering sound: noise vs. speech
- Frequency, pitch, modulation
- Context information & hypothesis
- Age
- Hearing Loss
- Reverberation & distance
- Source location & spatial separation

→ We use different listening strategies ("cues") in different environments!?
Better Ear Effect

Results show huge differences between “Better Ear” and “Poorer Ear” in each condition and rather small differences between “Better Ear” and “binaural” condition if target is at side.

Fig. 3 in Hawley et al., JASA 1999

Better Ear Effect

Results show huge differences between “monaural” and “binaural” conditions but not as huge differences between both “monaural” conditions if target is at front.

Fig. 3 in Hawley et al., JASA 1999

Binaural Directivity
Technology Behind the Hearing Aids Grand Rounds - Round 2 Web Seminar
Recorded October 30, 2014

Speech intelligibility in complex acoustic environments
- Different listening environments ⇒ different listening strategies
 - Binaural advantage:
 - Select the better of two ears, or
 - Use binaural directivity
 - Better ear is most useful in extreme conditions

→Selection of the most effective listening strategies happens unconsciously!!

→ Different listening strategies are provided by Binaural VoiceStream Technology™

Binaural VoiceStream Technology™
Mimics selective binaural listening strategies

Feature(s) making use of "Better Ear effect"?
- (auto) ZoomControl
- DuoPhone
- Speech in Wind

Feature(s) making use of "Better Ear effect"?
- (auto) ZoomControl
- DuoPhone
- Speech in Wind

Good SNR

Poor SNR
Feature(s) making use of “Better Ear effect”?
- (auto) ZoomControl
- DuoPhone

Speech in Wind

- Good SNR
- Poor SNR

KEMAR Recording, wind speed 2.5 m/s, Turn KEMAR Head

- Detector left
- Stream-left-to-right
- Detector right

Speech In Wind: Audio-Demonstration
Binaural VoiceStream Technology™
- Binaural VoiceStream Technology®
- Feature(s) making use of "Binaural directivity"?
 - (auto) StereoZoom

Improving directivity by combination of monaural directional microphone outputs

Algorithms based on Binaural VoiceStream Technology® provide improved speech understanding in complex listening situations

... when target is in front
... when target is to the side
... when listener is in windy environment

Devices based on Binaural VoiceStream Technology® provide improved speech understanding in complex listening situations

... when target is in front
Goal
Evaluate the effects of a binaural beamformer (StereoZoom) in comparison to monaural beamformer systems in a diffuse noise situation and speech and noise source are close.

Participants
20 subjects with moderate hearing loss.

Hearing Aids
Phonak Ambra M H2O
Competitor

Settings
Monaural adaptive Beamformer
Binaural Beamformer (StereoZoom)

Setup
Speech is presented from front in diffuse noise.

Results
OLSA (50%): Difference versus the monaural beamformer (1.7 dB) and the competition approach (2.8 dB). P<.05.
"Target is in Front": Hörzentrum Oldenburg

- Binaural beamformer improves the speech intelligibility significantly and “is a viable option for patients who have substantial difficulties in noise” (original Picou et al.)
- StereoZoom (making use of "binaural directivity")

Improve Speech Intelligibility with binaural algorithms

Algorithms based on Binaural VoiceStream Technology™ provide improved speech understanding in complex listening situations

... when target is in front
... when target is to the side
... when listener is in windy environment
Technology Behind the Hearing Aids Grand Rounds - Round 2 Web Seminar
Recorded October 30, 2014

Adaptive StreoZoom: External study HS Lübeck

- **Goal:**
 Comparison of manual and automatic selection of program in certain acoustical environments

- **Participants:**
 14 test subjects (aver. 72 y)
 HL: moderate-to-severe

- **Hearing Aids:**
 Audeo V90-312

- **Settings:**
 AutoSense (defaults settings)
 Car program
 Speech in Quiet program
 Speech in Loud Noise program
 Speech in Noise program
 Comfort in Noise program

- **Acoustics:**
 Closed couplings

Adaptive StreoZoom: External study HS Lübeck

- **Setup:**
 - Speech in Quiet
 - Speech in Loud Noise
 - Speech in Car

 Setup:
 - Speech in Noise
 (Cafeterian Noise – 65 dB)
 - Speech in Loud Noise
 (Cafeterian Noise – 70 dB)
 - Speech in Car
 (Car Noise – 58 dB)

Adaptive StreoZoom: External study HS Lübeck

- **Procedure and Outcome measures:**

 - Subject selects preferred program in each of the simulated acoustical situations
 - Matrix: manual & automatic selection
 - Göttlinger Sentence Test (adaptive, variation of speech level, noise 65 dB, all simulated situations)
 - Subjective assessment of all simulated situations: double blinded!
Selection Matrix – Major observations

- **Situations with noise**: subjects select programs optimized for noisy environments (noise reduction?)
- **Speech in loud noise**: people prefer reduction of overall noise level to improvement of speech intelligibility
- **In Car**: subjects are unsure about favorable program (use all available programs)
 - Confirmation of necessity of extra car program
- **2 of 14 subjects** select in 3 of 4 or in all situations the same program as the automatic (interested in technic and use hearing devices intensively)
 - Concentrate more on differences between programs than “usual” subjects
Objective – Results (GoSa)
("selected" Benefit)

Better

The program selected by AutoSense OS provides better speech intelligibility in each noisy situation.

Adaptive StereoZoom: External study HS Lübeck

Major findings

- Subjects select mostly a different program than the automatic algorithm (AutoSense OS)
- The highest variance of selection appears in the situation “Car”
 ➔ Hint: necessity of a special program for the car situation

TAKE HOME

1. The program selected by the automatic systems provides clearly the best performance
2. In car situation SoundFlow seems to be audibly much more unstable than AutoSense OS
3. First study on automatic systems in hearing aid that could show objective benefit of automatic systems
4. In future systems it should be made possible to individualize automatic systems e.g. according to comfort ≠ speech intelligibility

"Target is to the side": Wu et al. (IOWA University)*

- Goal
 Compare the effectiveness of three new hearing aid technologies that may aid speech recognition in the car.

- Participants
 25 subjects with moderate to severe hearing loss

- Test - Systems
 HA1: "Back-DIR" technology
 HA2: "Side-Transmission" and "Back-DIR" technologies ➔ auto ZoomControl

* "The Effect of Hearing Aid Technologies on Listening in an Automobile" (Wu et al., JAAA 2013)
Technology Behind the Hearing Aids Grand Rounds - Round 2 Web Seminar
Recorded October 30, 2014

"Target is to the side": Wu et al. (IOWA University)

- Test Set-Up: Recordings

Speech: CST Speech Material
Noise: Car noise (75 mph ➔ 75 dBA)

Results
- CST: Subjects understand speech from behind and side better with ZoomControl than with other settings (p<.05)
- ZoomControl shows advantages to other approaches

Paired Comparison: NewTech technology of HA2 is clearly better than HA1. Only NewTech of HA2 (ZoomControl) is preferred compared to directional or omni-directional conditions when Speech is from the side.
Conclusion:
- The speech test results – but also subjective paired comparisons - suggest “auto ZoomControl” can improve speech understanding and is preferred by listeners.
- Auto ZoomControl (making use of “better ear effect”)

Improve Speech Intelligibility with binaural algorithms

Algorithms based on Binaural VoiceStream Technology™ provide improved speech understanding in complex listening situations

...when target is in front
...when target is to the side
...when listener is in windy environment

Optimizing Speech Intelligibility with binaural algorithms

Algorithms based on Binaural VoiceStream Technology™ provide improved speech understanding in complex listening situations

...when listener is in a windy environment
Technology Behind the Hearing Aids Grand Rounds - Round 2 Web Seminar
Recorded October 30, 2014

Goal
Verification of Speech in Wind compared to monaural Wind Noise Canceller (WNC)

Participant
KEMAR

Test - conditions
WNC off
WindBlock 1
WindBlock 2

Test - devices
Bolero Q90 M13
Ambra M H2O
"Listener is in windy situation": University of Illinois

Setup wind tunnel measurement

Flow noise recordings in wind tunnel and turning KEMAR

- Measurement of output level at each 10°

Comparison of WindBlock 1st and 2nd generation

Windspeed: 4.5 m/s

Graph shows: SPL (WNCOFF) - SPL (WNCON) → dB SPL

Results

- Difference of output level of WNCOFF and WNCON is larger for WindBlock 2 at almost all angles

Overview

- Objective (Verification)
 - University of Illinois
- Subjective (Validation)
 - Hearing Centre Oldenburg

"Listener is in windy situation"
“Listener is in windy situation”: Hearing Centre Oldenburg

• Goal
 Evaluation of Speech in Wind in laboratory and everyday life conditions in comparison to no WNC and own hearing devices in asymmetrical wind conditions

• Participants
 - Study#1:
 - 15 hearing impaired subjects with moderate to severe hearing loss
 - Short hairs (only men)
 - Report wind problems in real life
 - Study#2: 12 hearing impaired subjects with severe hearing loss

 - Test - Conditions
 No WNC
 Speech In Wind
 Own hearing aids

 - Phonak hearing aids
 Bolero Q90 M13/Naida Q90 SP
 Own hearing aids

“Listener is in windy situation”: Hearing Centre Oldenburg

• Outcome Measures
 • Speech Test: Oldenburger Sentence Test in wind
 • Localization Test
 • Subjective assessment in laboratory and real life of
 ◦ Loudness of Wind
 ◦ Loudness of Speech
 ◦ Subjective Speech Perception
 ◦ Sound Quality
 ◦ Listening Effort
 ◦ Overall Impression

“Listener is in windy situation”: Hearing Centre Oldenburg

Study#1: Test Set-Up: Speech-Test

Speech:
OLSA Speech Material
KEMAR Recordings (from validation experiences)
Presentation of Individual recordings via ear-phones

Noise:
Wind noise (wind speed 4.5 m/s)
Oldenburg Sentence Test

• Results

Oldenburg Sentence Test

Moderate HL

Severe HL

Results:

- Subjects understand speech with Speech in Wind much better (about 28% for the moderate HL group and 27% for the severe HL group: p<.05) than without WNC.

Subjective judgments in laboratory

• Results

- Overall loudness and loudness of speech is almost the same due to the sustainment of the low frequency energy.
- Loudness of wind is significantly preferred when using Speech in Wind.

SiW

• Conclusions

- Proven the functionality of the binaural WNC in the laboratory (and real life).
- Improved loudness of the wind noise and improved speech intelligibility in (asymmetric) wind situations.
 - Speech in Wind (making use of “better ear effect”).

"Listener is in windy situation": Hearing Centre Oldenburg

"Listener is in windy situation": Hörzentrum Oldenburg

"Listening is in windy situation"
Algorithms based on Binaural VoiceStream Technology provide improved speech understanding in complex listening situations:

...when target is in front
...when target is to the side
...when listener is in windy environment

Conclusions – Take Home Messages

1) Binaural listening can be supported by binaural algorithms in hearing aids
2) Binaural VoiceStream Technology mimics “the better ear effect” and “binaural directionality”
3) The algorithms increase the speech intelligibility in various complex listening situations
4) The described algorithms address speech understanding in various situations

➢ The presented binaural algorithms help to increase the satisfaction of the hearing aid user with their devices

Thank you very much

michael.nilsson@phonak.com
Did you know

About 8-10% of hearing aid owners in the U.S. never wear their hearing aids.

The leading reason for this, given by 55% of respondents, is benefit/benefit in background noise.

This accounts for around 600,000 non-users in the U.S.

Understanding the scoring of common speech-recognition-in-noise tests.

Many speech-in-noise tests are geared to find the point where the patient/subject can recognize (understand) 50% of the words. A signal-to-noise ratio is then recorded for that point. This is often referred to as the SRT-50 or SNR-50. Two common tests used are the QuickSIN and the HINT.

Using this method to define performance, negative numbers are good. For example an SRT-50 of 2 dB would mean that the speech had to be 2 dB louder than the noise, whereas an SRT-50 of -2 dB would mean that the person could understand 50% when the noise was 2 dB louder than the speech.
Speech in Noise Tests

If a person is in a listening-in-noise situation where they are only understanding about 50% of what is being said, a 1 dB improvement in the SNR will be about a 10% improvement in speech understanding.

A great study to remember from 2012 (Leavitt and Flexer)

Fitted a group of hearing impaired with a pair of the premier hearing aids from each of the Big Six companies. Programmed the hearing aids according to each manufacturer’s proprietary default fitting. Directional and noise reduction was activated. Also tested a pair of 10-year-old single-channel analog instruments—no directional microphones or noise reduction. These hearing aids programmed to NAL. All subjects tested with the QuickSIN for all seven pairs of hearing aids.

Performance for the aided QuickSIN. Bars indicate “SNR-Loss”. The average SNR disadvantage compared to individuals with normal hearing.
Critical Teaching Point:

Audibility is an amazing thing.

If you don’t have gain and output programmed effectively, all the other special features we’re going to talk about don’t matter very much!

What technology is needed to maximize hearing performance in background noise?

- First and foremost, a good gain and output algorithm
- Directional microphone technology
- Noise reduction algorithms for a variety of listening situations

So what else can we do to improve speech understanding in background noise?

Binaural Processing
How binaural processing helps people with normal hearing understand better in background noise:

Binaural Redundancy
You hear things twice, so have two chances to "get it right"

Binaural Squelch
The brainstem analyzes intensity and phase differences from the two ears; allows desired signals to pass more readily

Directed Attention
Brain focuses attention on desired signal

Binaural processing with our average hearing aid user with a bilateral hearing loss, and likely is over 65 years of age.

Binaural Redundancy
Redundancy is reduced because of lack of audibility, and a distorted signal from a damaged cochlea.

Binaural Squelch
Squelch is reduced because there is less signal to compare, intensity and phase is altered, and neural processing is impaired.

Directed Attention
Cognitive function is reduced, even more so for people with hearing loss.

What we can do with hearing aids, that can compensate for the shortcomings of the patient's binaural system:

Binaural Redundancy
With advanced binaural beamforming, we can improve the SNR of the signal delivered to both ears.

Binaural Squelch
With advanced binaural beamforming, we can "squelch" competing signals surrounding the listener.

Directed Attention
With advanced binaural beamforming, we can enhance the desired signal (front, back, or either side) and reduce other competing signals.
Example of polar pattern when speech is presented from the left side

How binaural processing helps people with normal hearing understand better in background noise:

- **Monaural**
 - Brain gets 1 chance to hear signal
 - 1-2 dB advantage

- **Binaural redundancy**
 - Brain gets 2 chances to hear signal
 - 1-2 dB advantage

How binaural processing helps people with normal hearing understand better in background noise:

- **Monaural**
 - Brain can focus on speech and squelch noise
 - 1-2 dB advantage

- **Binaural squelch**
 - Brain can focus on speech and squelch noise
 - 1-2 dB advantage
How binaural processing helps people with normal hearing understand better in background noise:

- **Monaural**
 - Immediate focus on desired signal
 - 1-2 dB advantage

- **Binaural directed listening**
 - Conscious focus on desired signal
 - 1-2 dB advantage

Binaural processing - normal hearing vs. hearing impaired

- Normal binaural hearing
 - Binaural advantages are reduced with hearing loss because of:
 - Reduced audibility & cochlear distortions
 - Asymmetry of hearing & impaired neural processing
 - Reduced cognitive processing & central auditory deficits

- Hearing impaired

E2e wireless 3.0

- High Definition Sound Resolution (HDSR)
 - NEW: Transmission of audio signals
 - Virtual 8 microphone network
 - Transmission of data and audio signals
Narrow Directionality

Standard Directionality
- Attenuates noise from the back, but not as efficiently as for noise from the sides.

Narrow Directionality
- Narrows directional microphone focus
- Simulates effects of natural binaural hearing
- Better than normal hearing in demanding environments

Spatial SpeechFocus

Spatial SpeechFocus
- True directivity to all four directions while preserving spatial cues
- Useful if wearer cannot turn his head
- Automatically adapts the focus

Spatial SpeechFocus
- Automatically activated in a car (Universal Program)
- Add a dedicated program for walk and talk situations
- Situation-based wearer control
General protocol for “Narrow Directivity” efficacy study:

In clinical setting, conduct aided speech-in-noise testing for a group of hearing impaired individuals.
Use individuals with mild-to-moderate sensory/neural loss, with normal cognitive function.
Create a difficult listening situation with both energetic and informational masking.
Conduct the same testing with a group of age-matched controls with normal hearing.
Conduct testing at two different sites to show the findings are repeatable.

Clinical Protocol: Deliver the target speech message from the front; noise from seven loudspeakers surrounding the listener. Conduct testing for both hearing impaired and normal hearing individuals.

The “noise” was different sentences of the same speech material that served as the target signal.
Findings from Site 1
(Hearing Research Center, Oldenburg, Germany).

Findings from Site 2
(UNCO, Greeley, Colorado).

Narrow Directionality
Better than normal hearing in demanding environments.*

* Studies conducted at University of Northern Colorado (2014) and Oldenburg Horzentrum (2013) showed that Speech Reception Thresholds (SRT) in cocktail-party situations improved up to 2.9 dB for wearers with mild to moderate hearing loss using bialex with Narrow Directionality, compared to people with normal hearing.
User Control

Automatic, all the time.
Situation-based wearer control. Discrete handling via App.

- Spatial Configurator - Span
- Spatial Configurator - Direction

touchControl App

Ultra High Frequency Coded Sound

- Change programs
- Adjust volume
- Mute
- SoundBalance control

easyTek App

- Change programs
- Adjust volume
- Mute
- SoundBalance control
- External source selection
- Battery life of instruments / easyTek
- Spatial Configurator
Technology Behind the Hearing Aids Grand Rounds - Round 2 Web Seminar
Recorded October 30, 2014

Spatial Configurator - Span

Automatic, all the time
Decides on the most likely listening target.

- Manual override of automatic program
- More-targeted or more-broad listening
- Access via Rocker Switch or easyTek & easyTek App

Spatial Configurator - Direction

Automatic in a car situation
Decides on the most likely listening target.

- Manual override of automatic program
- Manual selection of the listening direction
- Allows wearer access to Spatial SpeechFocus in ANY situation
- Manipulation via easyTek & easyTek App

Practical Benefit

- Situation-based wearer control
- Discreet handling
- Versatility via rocke switch or App (Span)
- Versatility via App (Direction)
- Automatically switches back to Universal Program if there is no wearer interaction
So, with bilaterally fitted instruments with beamforming technology, we can compensate for the shortcomings of the patient’s binaural system:

Binaural Redundancy
 We can improve the SNR of the signal delivered to both ears.
Binaural Squelch
 We can “squelch” competing signals surrounding the listener.
Directed Attention
 We can enhance the desired signal (front, back, or either side) and reduce other competing signals.
Which Principles Drive the Development of Our Solutions?

Real Time Speech Understanding:

• More than word recognition
• The ability to extract meaningful information from on-going conversation
• On-going, real-time
• Normally effortless
• Pulls from a shared pool of resources
Technology Behind the Hearing Aids Grand Rounds - Round 2 Web Seminar
Recorded October 30, 2014

Inner Hair Cells

Normal Damaged Aided

Yost & Nielsen, 1985

Inner Hair Cells

Normal Damaged Aided

Yost & Nielsen, 1985

Inner Hair Cells

Normal Damaged Aided

Yost & Nielsen, 1985

Brain Image
Feeding the Brain

- Maximize use of bandwidth & dynamic range
- Maximize preservation of speech detail
- Improve S/N whenever possible
- Binaural system
- What works is personal
Technology Behind the Hearing Aids Grand Rounds - Round 2 Web Seminar
Recorded October 30, 2014

Dulles Airport
Right Exit
1 Mile

Dulles Airport
Right Exit
1 Mile

Input (+15 dB S/N) Fast Acting Speech Guard
Normal Relationship After Fast Acting Compression

Doctor Simpson

Fast Acting Speech Guard
Correlations:
Original input envelope compared to processed envelope
Technology Behind the Hearing Aids Grand Rounds - Round 2 Web Seminar
Recorded October 30, 2014

Input (dB SPL) Output (dB SPL)
30 40 50 60 70 80 90 100 110 120
120
110
100
90
80
70
60
50
40
30

Fast Acting Compression

Input (dB SPL) Output (dB SPL)
30 40 50 60 70 80 90 100 110 120
120
110
100
90
80
70
60
50
40
30

Long-term Gain Adjustment
Technology Behind the Hearing Aids Grand Rounds - Round 2 Web Seminar
Recorded October 30, 2014

Long-term Gain Adjustment

Input (dB SPL)
Output (dB SPL)

120 110 100 90 80 70 60 50 40 30

10 dB Increase 20 dB Decrease

Average +4 Average -9

Average +5 Average -11

Andreas Pittner et al. 2014 (JAAA): Fast, slow and Adaptive Amplitude Compression

Stimuli: Extraneous sound
Word

Categories: Person, Food, Animal, FF
Andrea Pittman et al. 2014 (JAAA): Fast, slow and Adaptive Amplitude Compression

Word categorization performance

- No statistically significant difference
- Strong statistical difference
The Oticon Audiological Approach: Speech Guard E