GSI TympStar™

Basic Operation and Maximum Efficiency

Introduction
Laura Prigge, AuD

- AuD from ATSU, MA of Audiology from UCONN, BS Communication Disorders from Western Illinois University.
- 15+ years experience include providing manufacturing support as well as managing educational audiology training for an international audiologic equipment company.
- Additional experience: clinician in both ENT offices and a retail hearing center conducting audiologic evaluations and hearing aid fittings on all patient populations including infants, adults, geriatric, and special needs patients.
- Joined GSI in 2010 as application specialist

Overview
- History of Immitance/Typical Use
 - Anatomy and Physiology
 - Diagnostic evaluations
- Customizing Auto Sequence and User Tests
- Maximizing Efficiency: Practical Applications
Middle Ear Testing in Today’s Clinic

Typical Use

• Evaluate integrity of the middle ear and acoustic neural pathway
 – Tympanometry
 – Acoustic Reflexes
 – Acoustic Reflex Decay
 – Eustachian Tube Function

Typical Use

• Objective documentation of reduced eardrum movement (ie: fluid, wax, etc.)
• Monitor chronic middle-ear fluid
• Monitor P.E. tube function
• Confirm tympanic membrane perforation
• Monitor Eustachian tube function
• Correlate with audiogram to develop a more complete picture of hearing
What is being tested??

Anatomy, Physiology and Terminology

Important Review

- In order to understand the mechanics of the ear, it is critical to review the structures and how they contribute to the measurement
- Components fall into categories
 - Compliance Elements
 - Mass Elements
 - Friction Elements
- It is also imperative that the verbiage is clearly defined

Physics of the Middle Ear
Vocabulary

- Impedance
 - Resistance
 - Reactance
- Admittance (Y)
 - Susceptance (B)
 - Conductance (G)

Impedance

- The opposition to the flow of energy
- If energy is introduced to a system (such as the middle ear), how much of the energy is blocked, or impeded
 - Reactance
 - Resistance
- Can not directly measure impedance of the middle ear in humans

Admittance (Y)

- The inverse of Impedance
- The ease at which sound flows through the middle ear system
- Measurement is taken at the plane of the eardrum
- Two components – Susceptance (B) and Conductance (G)
Susceptance (B)

- The relationship between the springy parts of the middle ear and the mass elements of the middle ear
- Referred to as the “Stiffness” of the system
- Springy = muscles, connective tissues, other soft materials
- Mass = ossicles
- Flexibility of movement in the middle ear cavity

Susceptance

Conductance (G)

- Measures the amount of energy that is lost due to the friction in the middle ear
- Measures the effect that resistance has on energy flow
- Tendons, ligaments, air molecules and resistance created when the stapes pushes on the perilymph in the inner ear contribute to loss of energy
Friction Points

Process

Sound Transmission
226 Hz Probe Tone

• Most commonly used stimulus for screening and basic diagnostic evaluation
• 226 Hz elicits the fastest and most accurate “picture” of a normal middle ear

226 Hz Probe tone

• Ear is primarily driven by the springy portion of susceptance at this low frequency
• \(B = Y \)
• \(ml = \) only probe tone that you can measure using \(ml \) because strictly compliance driven
• Compliance = \(ml \) or \(cm^3 \)
Admittance Measurements

• GOAL = To measure the admittance of the middle ear – ease at which sound travels.
• PROBLEM = probe sits in the ear canal – measurement is taken from the probe.
• QUESTION = How do we isolate the admittance of the middle ear?

Tymp Process

Baseline Tympanogram

• Baseline means that the outer ear admittance has been automatically subtracted from total admittance
• The Ear Canal Volume will be estimated and displayed
• Ear Canal Volume can give valuable information about abnormal 226Hz Tympanometry
Interesting Questions….

• Why do we use 226 Hz?
• What happens if there is an abnormality?
• Why are the other probe tones available?

Why Use 226 Hz?

• Ear is Compliance driven
 ▪ Y = B
• Fastest way to evaluate a normal ear
 ▪ Tons of data on normal
• Certain that we are measuring the mechanical properties of the middle ear

226 Hz Probe Tone

• In order to isolate the process of energy transfer, the 226 Hz standard probe tone meets the following criteria:
 – Much lower than “normal” resonance frequency
 – Consistent, predictable results
 – At 226Hz, the ear is stiffness dominated (springy elements are “running the show”)
 – Does not elicit Reflex Thresholds at higher intensity level
What do we do with the other probe tones??
When do we use them??

Limitation of 226 Hz
- Great for confirming normal.
- Only as good as the eardrum.
- When more critical look at middle ear components is required, higher frequency probe tones can provide detailed information.

Other Probe Tones
- Y is not measured with 678 or 1000 Hz—need the individual B/G components to be measured independently.
- Not compensated. No baseline. No ECV. Admittance measured in mmho.
- As the frequency increases, the mass component of B contributes more and changes the shape of the tympanogram.
Resonance Frequency

- The frequency at which the middle ear system is the most efficient for energy transfer
- The frequency at which the springy and mass components have equal contribution
- Normal Ranges for Resonance Frequency
 - 600Hz to 1340 Hz (Colletti 1977)
 - 800Hz to 1200 Hz (Shanks 1984)

Resonance Frequency

- Low Frequency Probe Tone (226Hz)
 - Tymp will be \(^{\wedge}\)
- Mid Frequency Probe Tone (678Hz & 1000Hz)
 - All tymps will have multiple peaks - \(^{\wedge\wedge}\), inverted W
- High Frequency Probe Tone (above resonance frequency)
 - Tymps will continue to evolve to a V shape – opposite of the 226Hz

678 Hz Probe Tone
678 Hz Probe Tone

- 678 Hz Tympanograms are interpreted based on shape and configuration (morphology)
- 4 configurations are considered normal for 678 Hz Probe Tone
 - 1B1G
 - 3B1G
 - 3B3G
 - 5B3G

678 Hz Probe Tone

- Considered abnormal if the following occurs:
 1. Too many peaks
 2. Too wide
- Often help distinguish between ossicular discontinuities and other disorders – even when no abnormality is present on the 226Hz tymp.

Normal 678 Hz B/G
678 Hz Disarticulation

Broad peaks and wide inter-peak intervals

1000 Hz Probe Tone

- The infant ear is mass dominated.
- The infant ear has a lower resonance frequency, therefore lower probe tones create complex patterns and more notching.
- Classification scheme not consistent with pathology
 - Example, Type A recorded with effusion
- Using a 1000Hz probe tone is optimal.
Acoustic Reflexes and Decay

Anatomy & Physiology Terms

- There are 2 muscles in the middle ear:
 - Tensor tympani
 - Role is uncertain in the response to sound, but is involved in the opening and closing of the Eustachian Tube
 - Stapedius
 - Is the muscle that contracts reflexively in response to intense sound
- Acoustic Reflex Arc
 - The pathway of the auditory periphery and brainstem through which acoustic reflex passes through to stiffen the tympanic membranes

Ipsilateral Acoustic Reflex
The Pathway of the ARC

- Sound is presented to one ear
- Passes through the middle ear to the cochlea
- Moves along the VIIIth CN to the brainstem
- As an electrical impulse, it travels to the cochlear nucleus
- From the cochlear nucleus 3 separate pathways emerge:
 1. Ipsilateral superior olivary complex (SOC)
 2. Ipsilateral facial nerve (CN VII)
 3. Contralateral superior olivary complex (SOC)

The Pathway of the ARC cont’d

- SOC sends projections to the ipsilateral and contralateral facial nerve
- The facial nerve innervates the stapedius muscle
- The impulses from the facial nerve cause the stapedius muscle to contract
- Bilateral contraction of the stapedius muscle to monaural stimulation

ART Response
Interpretation of ART

- Response may be described as:
 - Present
 - Absent
 - Elevated
 - Abnormal Adaptation
- Reflexes occur at 85 dB HL in normal hearing individuals
- Analyze results from ipsilateral and contralateral ART to identify site of lesion

ART Result Pattern

<table>
<thead>
<tr>
<th></th>
<th>Ipsilateral</th>
<th>Contralateral</th>
<th>Ipsilateral</th>
<th>Contralateral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malleolar right</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Malleolar left</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Chorda tympani</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Labyrinthine right</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Labyrinthine left</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Inferior vestibular</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Superior vestibular</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Percussion left</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Percussion right</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Tympanic membrane</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Hearing Sensitivity & ART

<table>
<thead>
<tr>
<th>Hearing sensitivity (dB HL)</th>
<th>Acoustic Reflex Thresholds (dB HL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-25</td>
<td>90</td>
</tr>
<tr>
<td>20-45</td>
<td>95</td>
</tr>
<tr>
<td>40-65</td>
<td>105</td>
</tr>
<tr>
<td>60-85</td>
<td>115</td>
</tr>
<tr>
<td>80-100</td>
<td>125</td>
</tr>
<tr>
<td>100+</td>
<td>130</td>
</tr>
</tbody>
</table>
Reflex Decay

Acoustic Reflex Decay

- Important test to identify CN VIII pathologies and acoustic tumors on CN VIII
- When a stimulus is presented above the reflex threshold, it will induce a constant and steady decrease in compliance
 - 500 or 1000 Hz for 10 seconds
- Patients with CN VIII pathologies will exhibit abnormal decay of this response
 - CN VIII pathologies – decay occurs by 6.2 seconds
 - CN VIII tumor – decay occurs by 1.5 seconds

Reflex Decay

- Stimulus is presented for 10 seconds, 10dB above contralateral reflex threshold at 500 or 1000Hz.
- Does the contraction hold for the entire 10 seconds, or does it fatigue?
- Indicates retrocochlear pathology or pressure on hearing nerve.
- Needs to decay 50% or more to be considered “positive for decay.”
 - Less than 50% decay is reported as a “negative result”
Eustachian Tube Function

- The normal opening and closing of the Eustachian tube maintains equal air pressure between the middle ear and the outside world
- Abnormal ETF can cause the peak of the tympanogram to have significant negative pressure
- Abnormal ETF can be a precursor to middle ear disease such as Otitis Media

Intact Tympanic Membrane

- Perform 3 tympanograms:
 - Normal conditions
 - Swallow with nose & mouth closed
 - Blow with nose & mouth closed (Valsalva’s Maneuver)
- Tymp shows shift in pressure if Eustachian tube is functioning properly
- Total shift should be at least 15-20 daPa
Perforated Tympanic Membrane

- Introduce +/-400daPa of pressure
 - If ET opens due to pressure, the reading will equalize to 0 daPa... ET most likely functioning properly.
 - If pressure does not change, have patient swallow several times. If pressure does not equalize as a result... ET dysfunction.

Customizing the TympStar

User Tests
Auto Sequence

Button/Function Refresher
Programming User Tests

- Press a Test Type Hard Key
- Press Return on the display
- Press Program Mode
- Select a User
- Use soft keys to select parameters for this “test”
- Press Return
- Press Store!
User Tests – Program Mode

• Tympanometry
 – Screening, Diagnostic, User 1, User 2, User 3
• Reflex Threshold
 – Diagnostic, User 1, User 2, User 3, User 4
• ETF
 – Perforated TM, Intact TM
• Special Tests
 – Reflex Decay, ARLT, AR Sensi, Multiple Hz

Reflex Thresholds

• “Semi-Manual”
 – Examiner selects stimulus, intensity and presents manually. Thresholds are marked manually
• Threshold Seek
 – TympStar automatically presents stimulus at increasing intensity and interprets compliance change. Marks threshold automatically.
• Fully Manual
 – Examiner watches the VU meter for a change in compliance – no tracings

Threshold Seek Setup

• Must set up parameters in program mode
• Define start and stop intensity
• Define required change in compliance
• Manually select stimulus
Auto Sequence
- One button press performs pre-defined test sequence
- Sequence always starts with a 226 Hz Tympanogram
- Reflex thresholds, ipsilateral and/or contralateral, and stimuli defined by the examiner
- Reflex Decay, ipsilateral and/or contralateral, and stimuli defined by the examiner

Auto Sequence Setup
-ETF Hard Key
-Return Key on Display
-Instrument Options
-Test Sequence

Practical Applications
Maximizing Efficiency with Middle Ear Evaluations
Tympanometry – Tip #1

• Pressure Sweep Rates
 – Use 600/200 daPa/s or 200 daPa/s for screening purposes where need speed and snapshot of amplitude and pressure
 – Use 50 daPa/s for diagnostic purposes where accuracy is needed and patient is co-operating
 – Why? Higher speeds artificially increase tympanic amplitude
 - Example: In pre-school kids, a pump speed of 200 daPa/s yields a tym amplitude that is 22% higher than at 50 daPa/s (similar impact on adult ears)

Tympanometry – Tip #2

• Ear tip selection
 – Use screening tips when hand holding the probe tip
 – Use diagnostic tips when positioning probe within the ear canal
 – Clearly observe the ear canal entrance while positioning the probe

Tympanometry – Tip #3

• Use 226 Hz probe tone with Y
 – First measure of middle ear admittance on 6 month to adults
 – Provides information on ECV
 - If abnormally high: indicative of TM perforation
 - If abnormally low: indicative of occluded ear canal
 – Provides information on type of hearing loss
Reflex Thresholds – Tip #4

- Use Threshold Seek when the patient is able to sit quietly for the evaluation.
- Do not use Threshold Seek if reflex growth functions are required.
- For reflex growth, it is possible to expand the timebase to fit more tracings on one line.

Ipsilateral Reflex Threshold

- Why use multiplexing on TympStar?
 - Avoid artifact caused by interaction of probe tone with activating stimulus; greater accuracy
 - Probe tone on throughout measurement
 - Activating stimulus is turned on and off at a rate of approximately 10 times per second
 - During time when stimulus is turned off, microphone is turned on to measure changes in probe tone

Tympanometry – Tip #5

- 678 Hz Probe Tone should be the “GO TO” test when things just don’t add up
 - A/B Gap with normal 226
 - Abnormally steep gradient
 - Patient reports (hollow voice)
Tympanometry – Tip #6

- Use 678 Hz B/G simultaneously
 - Need diagnostic information on degree of middle ear pathology to allow MD to determine best treatment
 - Suspected disarticulation; Suspected otosclerosis

<table>
<thead>
<tr>
<th>B</th>
<th>G</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.98</td>
<td>0.75</td>
<td>1.50</td>
</tr>
<tr>
<td>Median: 1.53</td>
<td>2.29</td>
<td>3.00</td>
</tr>
<tr>
<td>Upper Limit: 2.22</td>
<td>3.94</td>
<td>5.80</td>
</tr>
</tbody>
</table>

Margolis, R., and Shanks, J. (Katz, J. 1995)

Susceptance

Pathologies

- Fixation - Otosclerosis
 - Decrease in susceptance (lower than normal) with an increase in conductance (higher than normal)
- Disarticulation
 - Increase in mass (if at junction of incus and stapes, the impact of mass is much greater that if break is at junction of malleus and incus)
678 Hz Disarticulation

- Broad peaks and wide inter-peak intervals

1000 Hz

- Infants 6 months and under
- Look for any discernable peak
- Utilize normal ranges

Summary

- Understanding the mechanics of the middle ear is important
- Gives more confidence in typical testing
- Gives understanding and insight if there is an abnormal response
- Gives more tools to add to our battery for the best possible care of our patients
Questions?

To ask a question, please type your question into the chat box in the lower left corner of the screen and click on the “Send” button located right below the box.

Laura Prigge, AuD
386-589-3423
lcp@grason-stadler.com