Assessing MP3 Player Use in the Clinic: Measurement and Counseling

Cory Portnuff, Au.D.
Ph.D. Candidate
University of Colorado at Boulder
Audiologist
ENT of Denver, PC

Brian Fligor, Sc.D.
Director of Diagnostic Audiology
Children’s Hospital Boston
Instructor in Otology and Laryngology
Harvard Medical School

Noise (& Music)-Induced Hearing Loss

Damage risk criteria (DRC):
- Function of time of exposure and the level (dBA) of the exposure (= “Noise Dose” or “TWA”)
- “Acceptable” risk is a judgment call

Population Fractiles of susceptibility:

<table>
<thead>
<tr>
<th>0.1</th>
<th>0.5</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragile</td>
<td>Avg</td>
<td>Tough</td>
</tr>
<tr>
<td>(10% most)</td>
<td></td>
<td>(10% least)</td>
</tr>
</tbody>
</table>

Damage Risk Criteria

- NIOSH
 - 85 dBA | 8 hrs
 - 88 dBA | 4 hrs
 - 91 dBA | 2 hrs
 - 94 dBA | 1 hr

- OSHA
 - 90 dBA | 8 hrs
 - 95 dBA | 4 hrs
 - 100 dBA | 2 hrs
 - 105 dBA | 1 hr

- WHO
 - 80 dBA | 8 hrs
 - 83 dBA | 4 hrs
 - 86 dBA | 2 hrs
 - 89 dBA | 1 hr

LIBERAL ... CONSERVATIVE
OSHA (1981):
Minimum Standard for Safety

<table>
<thead>
<tr>
<th>Organization</th>
<th>TWA Noise Exposure</th>
<th>Estimated % at Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO</td>
<td>90 dBA</td>
<td>21%</td>
</tr>
<tr>
<td></td>
<td>85 dBA</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>80 dBA</td>
<td>0%</td>
</tr>
<tr>
<td>EPA</td>
<td>90 dBA</td>
<td>22%</td>
</tr>
<tr>
<td></td>
<td>85 dBA</td>
<td>12%</td>
</tr>
<tr>
<td></td>
<td>80 dBA</td>
<td>5%</td>
</tr>
<tr>
<td>NIOSH</td>
<td>90 dBA</td>
<td>29%</td>
</tr>
<tr>
<td></td>
<td>85 dBA</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>80 dBA</td>
<td>3%</td>
</tr>
<tr>
<td>Prince, et al 1997</td>
<td>85 dBA</td>
<td>8%</td>
</tr>
</tbody>
</table>

EPA
- 90 dBA 22%
- 85 dBA 12%
- 80 dBA 5%

NIOSH
- 90 dBA 29%
- 85 dBA 15%
- 80 dBA 3%

So… what criteria do we use?

- Damage-risk Criteria
 - 90 dBA, 5 dB exchange ratio (OSHA)
 - 85 dBA, 3 dB exchange ratio (NIOSH)
 - 80 dBA, 3 dB exchange ratio (WHO)

- Percentage of noise dose due to music?
 - 50%
 - 100%
 - Some other percentage?

Who is at risk for MIHL

- Musicians
 - Amplified musicians
 - Stage levels can exceed 110 dBA
 - Classical musicians
 - Levels may be lower, but exposure time is greater
- Music students
 - Long exposure time
Who is at risk for MIHL?

- Listeners
 - Amplified music
- Dance clubs
- Concerts
 - Attendees & Employees
- Classical Music
- Portable listening devices

15 year old male following right cerumen removal daily PSS use “all the way up”

14-year-old male (seen 4/09)
Did not pass school hearing screen
Max volume on iPod, 60 min/day
DPOAEs, 14-year-old iPod users (1 ½ years), *notched audiogram*

- Reduced or absent DPOAEs at frequencies 4000 Hz and above re: 95% normals (Gorga, et al., 1997)

Predicted hearing loss

- Normal hearing to 20 years of exposure at 100% dose

How do we measure PLDs?
PLD Measurement Techniques

- KEMAR (ISO 11904-2)
 - Accurate measurements
 - Requires “research” equipment

PLD Measurement Techniques

- Probe Microphone (ISO 11904-1)
 - Can use “research” probe microphone
 - Etymotic ER-7c
 - Can use “clinical” probe microphone

STOP

We can’t just use the output level measured at the eardrum!
“Free-Field Equivalent Output Level”

Output level at eardrum

- Transfer Function of the Open Ear (TFOE)

= Free-field Equivalent Output Level

• The Free-Field Equivalent Output Level can be compared to damage-risk criteria that use free-field measurements.

Why Free-Field Equivalent?

• Bare microphone underestimates by 8 dB

• Closed cavity overestimates by 5-9 dB

Keith, Michaud, Chiu (2008)
Free-field Equivalent Output Level +
Listening durations =
Noise Dose

Clinical Measurements with Verifit

1. Measure Transfer Function of Outer Ear
 - Swept tone
2. Measure Output of PLD
 - “Live Speech” (speaker off)
3. Corrections
 - Subtract TFOE, apply A-Weighting
4. Powersum to get overall level
But… I hate doing math!
There’s a handy spreadsheet for this!

Portnuff, Fligor & Arehart, In preparation

Output levels of music

Averaged across players, no sig diff (1-way ANOVA, p > .05)

Figure 1. Free-field equivalent output levels of 5 mp3 players, using stock earphones, as a function of volume control settings. Error bars represent 1 standard deviation around the grand average.

Are all PLDs the same?

<table>
<thead>
<tr>
<th>Player</th>
<th>Output level increase with 10% volume control increase</th>
<th>Voltage at 100% of volume control, 1kHz tone</th>
<th>Voltage at 10% of volume control, 1kHz tone</th>
</tr>
</thead>
<tbody>
<tr>
<td>iPod</td>
<td>5.93 dBA</td>
<td>534 mV</td>
<td>0.9 mV</td>
</tr>
<tr>
<td>iPod Mini</td>
<td>6.10 dBA</td>
<td>577 mV</td>
<td>0.93 mV</td>
</tr>
<tr>
<td>iPod Nano</td>
<td>6.30 dBA</td>
<td>450 mV</td>
<td>0.75 mV</td>
</tr>
<tr>
<td>Creative Zen Micro</td>
<td>5.81 dBA</td>
<td>448 mV</td>
<td>1.0 mV</td>
</tr>
<tr>
<td>Sandisk Sansa</td>
<td>6.61 dBA</td>
<td>284 mV</td>
<td>0.35 mV</td>
</tr>
</tbody>
</table>
Are all earphones the same?

- Stock Earphones:
 - 101-108 dBA (Keith, Michaud, Chiu, 2008)
 - 97-104 dBA (Portnuff & Fligor, In preparation)
 - 102.5 (Keppler et al, 2010)

Significant effect of earphone sensitivity and seal in ear
- Maximum output up to:
 - 120 dBA (Keith et al, 2008)
 - 107 dBA (Portnuff & Fligor, in Preparation)

So... what criteria do we use?

- Damage-risk Criteria
 - OSHA (90 dBA, 5 dB exchange ratio)
 - NIOSH (85 dBA, 3 dB exchange ratio)
 - WHO (80 dBA, 3 dB exchange ratio)

- Percentage of noise dose?
 - 50%
 - 100%
 - Some other percentage?
Listening Behavior

- **Self-report**
 - 14% of university students listen at 80-100% (Ahmed, King, Morrish, Zazewska, and Pichora-Fuller, 2006)
 - 35% listened “loud”, 6% listened “very loud” (Torre, 2008)

- **Measured CLL**
 - 25% of listeners exceeded 85 dB $L_{\text{Aeq,8h}}$ (Williams, 2005)
 - 6% of doctoral students >85 dBA in quiet (Fligor & Ives, submitted)
 - Up to 80% >85 dBA in noise (Fligor & Ives, submitted)

How many people are at risk?

-how many people are at risk?

Portnuff, Fligor & Arehart (2009) In preparation
Self-reported Listening

- Average listening time: 2 hours
- Self-reported CLL:
 - 74.09 dBA (range: 52.32 dBA - 91.83 dBA, st dev: 10.82 dBA)

<table>
<thead>
<tr>
<th></th>
<th>OSHA</th>
<th>NIOSH/ACGIH</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Noise Dose</td>
<td>8.0%</td>
<td>20.9%</td>
<td>66.4%</td>
</tr>
<tr>
<td>Noise Dose Range</td>
<td>0-74.1%</td>
<td>0-241.0%</td>
<td>0-765%</td>
</tr>
<tr>
<td>Subjects exceeding:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50% Noise Dose</td>
<td>1 (3.4%)</td>
<td>4 (13.8%)</td>
<td>7 (24.1%)</td>
</tr>
<tr>
<td>100% Noise Dose</td>
<td>0 (0%)</td>
<td>2 (6.9%)</td>
<td>4 (13.8%)</td>
</tr>
</tbody>
</table>

Listening Time Guidelines

- Time to 50% noise dose, NIOSH damage-risk criteria

<table>
<thead>
<tr>
<th>% of Volume Control</th>
<th>Minimum listening time per day</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Earbuds</td>
</tr>
<tr>
<td>10-50%</td>
<td>No limit</td>
</tr>
<tr>
<td>60%</td>
<td>No limit</td>
</tr>
<tr>
<td>70%</td>
<td>6 hours</td>
</tr>
<tr>
<td>80%</td>
<td>1.5 hours</td>
</tr>
<tr>
<td>90%</td>
<td>22 minutes</td>
</tr>
<tr>
<td>100%</td>
<td>3 minutes</td>
</tr>
</tbody>
</table>

NOTE: Do NOT over-interpret this table to suggest “isolator” headphones are more “dangerous”!

Extrapolating iPod-induced HL

- >100 million .mp3 players sold since hit market 2001 (~70% of market share Apple iPod; 275 million projected sales by 2011 (Ethier, 2008)

- A Conservative Estimate for today's teenagers
 - 7% at risk for hearing loss from typical usage
 - Consider the 0.1 fractile (only the most susceptible)
 - 0.7% of 100 million: 700,000 could be expected to sustain a “material hearing impairment” if they listen for long enough time (e.g., years)
Extrapolating iPod-induced HL
• 700,000 with iPod-induced hearing loss
• 900,000 with congenital SNHL
• 10,000,000 with noise induced hearing loss

Evaluating the PLD user
• Survey measures to identify extent of PLD use
 • Audiometric Evaluation
 • Pure-tone monitoring
 • OAE monitoring
 • PLD measurements
 • PLD use counseling

Counseling the PLD User
• Consider Noise Dose
 • Dose is cumulative through the day
 • PLDs are only one part of the daily exposure
 • Occupational exposure
 • Recreational exposure
 • Consider variations in exposure level
 • Are there times when the level is significantly lower or higher?
Counseling the PLD User

- Consider listening environment
- Always higher listening in background noise
- Average preferred SNR +4 to +13 dB

- Consider earphones
 - Earphone sensitivity affects output level
 - Isolation affects SNR & chosen level

Final Messages

- MIHL is ENTIRELY preventable

- Portable listening devices are not inherently dangerous – most are used safely!

- Audiologists are the single professional with the knowledge to educate students and professionals about MIHL

Final Messages

- For a musician, MIHL is an occupational hazard/risk/disease

- Musicians may think differently than your average patient

- Those occupationally exposed to music need an audiologist like everyone needs a dentist